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Abstract

In this paper, entropy is presented as an important variable in effectively describing and predicting various phase
change processes. An interfacial entropy constraint, downward concavity condition and Second Law formulation are
obtained. Modelling of interfacial momentum interactions and thermal recalescence are based on heat-entropy anal-
ogies. It is shown that deeper insight into phase change processes with fluid flow can be realized through consideration
of the analogy variable (entropy). Also, an entropy-based approach provides effective guidelines for interface tracking
and numerical stability in phase change computations involving a control volume-based finite element method

(CVFEM) formulation. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Solidification and melting arises in many important
applications, including materials processing, ice accre-
tion on structures and thermal energy storage in elec-
tronic assemblies. The design and prediction of these
phase change processes typically involves solutions of
the conservation equations (i.e. mass, momentum, en-
ergy, species concentration equations). A variety of nu-
merical procedures, such as finite differences [1], finite
elements [2], finite volumes [3] and combined finite vol-
ume—element methods [4,5], has been developed for
these problems. These numerical models provide effec-
tive tools for further understanding of complicated
transport processes during solidification and melting.

Additional recent studies have examined specific
transport processes during solid-liquid phase change,
such as solute segregation, thermosolutal convection
and interdendritic and shrinkage flows. For example,
Flood and Davidson [6] observed the formation of
centerline macrosegregation in aluminum cast ingots
including the sensitivity to ingot thickness and casting
speed. Rady and co-workers [7] used a finite volume
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method to predict thermal and solutal buoyancy during
solidification of hypereutectic and hypoeutectic binary
alloys. Additional phenomena involving interdendritic
flows, particularly solute redistribution in the mushy
zone, were examined by Maples and Poirier [8]. Solidi-
fication shrinkage flows were examined by Naterer [9]
through a simultaneous pressure—velocity coupling in
the two-phase zone. Many diverse aspects of modelling
developments in these phase change problems are sum-
marized and discussed in a comprehensive review by
Salcudean and Abdullah [10].

Although significant advances have been achieved in
the analysis of the conservation equations, the corre-
sponding consideration of entropy (both physical and
computational) in solidification and melting problems
has been sparse. Computational entropy refers to the
discretized approximation of entropy as a state variable,
while physical entropy represents the actual thermody-
namic entropy, or entropy production, arising from a
physical process such as heat transfer or viscous mixing.
Bejan [11] examines minimization of entropy generation
in applications such as refrigeration, energy storage
systems and power generation. Charach and Rubinstein
[12] investigate entropy generation during phase change
heat conduction.

In solid-liquid phase change problems, entropy can
serve as an effective parameter for understanding and
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Nomenclature

solute concentration (pct. weight)
mass diffusivity (m?/s)

internal energy (J/kg)

mass fraction

body force (N)

gravitational acceleration (m/s?)
thermal conductivity (W/m K)
normal to interface

production rate

entropy or source term

time (s)

temperature (K)

velocity (m/s)

< g~ o »w;\m S A

Greek symbols

p expansion coefficient
u viscosity (kg/ms)

p density (kg/m?)

Subscripts

e eutectic

ip integration point
k phase k

1 liquid

] solid or entropy
Superscripts

n previous time level

n+1 current time level

describing various physical processes. For example, in-
terface properties, such as interface “‘roughness”, are
determined from the entropy change during phase
transition. At microscopic scales, a rough or ‘“non-fac-
eted” surface exhibits a low entropy of fusion. During
solidification, dendritic arms often grow in a direction
corresponding to the maximum thermal irreversibility
since it is aligned with the heat flow direction (i.e. di-
rection of local temperature gradient). As a result, en-
tropy is an important characteristic of the two-phase
permeability in describing how pockets or channels of
liquid are formed within the solid matrix. In addition,
thermal recalescence involves a transient temperature
rise during cooling of a freezing crystal that occurs due
to a latent heat release which exceeds the other modes of
cooling. In this case, a positive rate of entropy change
can indicate the duration and magnitude of the local
reheating. Although these processes have been observed
by many researchers, less attention has been given to the
role of entropy. It is anticipated that entropy can serve
as an effective variable in describing these physical
processes.

Also, previous studies of computational fluid dy-
namics have shown that the Second Law of Thermo-
dynamics can identify proper solution trends (i.e. [13])
and upwinding accuracy (i.e. [14]). In the context of
phase change heat transfer, these results may establish
the uniqueness of interface resolution subject to different
convergence tolerances imposed on a numerical model.
Entropy production can also determine an optimal and
convergent phase distribution during numerical itera-
tions without randomly cycling through phases because
only entropy-producing solutions are physically poss-
ible. The use of arbitrary convergence tolerances can be
reduced or eliminated with the Second Law. Based on
previous entropy studies by Naterer and Schneider [15],
it may be feasible to develop a quantitative approach to

numerical stability and error analysis through the Sec-
ond Law. In this paper, we will consider the modelling
of entropy transport for anticipated benefits in the
computational analysis of solidification and melting
with natural convection.

In fixed grid methods for phase change problems,
the location of the solid-liquid interface is determined
by an application of appropriate conservation princi-
ples and the latent heat of phase change is apportioned
between the nearest nodal points in the model. In this
approach, the location of the phase interface can only
be resolved with confidence to within one mesh spac-
ing. An iterative procedure is required as a result of
non-linearities in the interfacial constraints (i.e. energy
balance across phase interface), as well as convection
terms in the momentum equations. These iterations are
typically performed until changes in the solution be-
tween successive iterations decline below a specified
(often arbitrary) tolerance level (i.e. Picard iteration).
Numerous techniques have been developed for con-
vergence acceleration in non-linear problems, including
relaxation factors and multigrid methods [16]. Inter-
face tracking by sequential steps was proposed by
Schneider and Raw [17] whereby two phase rules are
used to coordinate the orderly progression of phase
transition between adjacent control volumes. The ap-
proach was later extended to binary constituent
problems and validated through experimentation by
Naterer and Schneider [4,5,18]. It will be shown that
these iterative procedures are closely related to the
Second Law. In establishing this relationship, further
improvements in computational performance, such as
convergence acceleration during interface tracking,
may be realized.

The main objective of this paper is to attempt to
derive an alternative entropy-based framework (so-
called “heat-entropy analogies’) for various transport



G.F. Naterer | International Journal of Heat and Mass Transfer 44 (2001) 2903-2916 2905

processes during phase change. These transport pro-
cesses include inter-phase momentum and recalescence
phenomena. The intrinsic generality of entropy as an
abstract concept (i.e. applications ranging from physical
systems to information and signal theories) provides
opportunities for deeper insight into complicated phe-
nomena. Previous analogies have established connec-
tions between heat transfer and friction coefficients (i.e.
Reynolds analogy between heat and momentum) and
similar opportunities may be established with entropy. It
will be shown that transport phenomena involving one
variable (temperature) may be inferred through consid-
eration of the other analogy variable (entropy). This
type of similarity can be useful if predicting a particular
variable is difficult or time-consuming, whereas analysis
involving the other analogy variable may be more
readily implemented. Furthermore, benefits arising from
the Second Law in computational models, such as nu-
merical stability, may be realized. In summary, it is
anticipated that the pursuit of heat-entropy analogies is
a worthwhile endeavour.

2. Formulation

The formulation of solid-liquid phase change, in-
cluding the governing equations, interfacial constraints
and numerical model, will be discussed in this section.

2.1. Governing equations

The governing equations for solid-liquid phase
transition are the conservation equations (i.e. mass,
momentum, energy), in conjunction with the binary al-
loy phase diagram, equation(s) of state and appropriate
supplementary equations relating microscopic and
macroscopic quantities. Continuum equations can be
written for the conserved quantities, &, where &, refers
to a vector of conserved quantities, including mass and
energy, and the subscript k refers to phase &, i.e. k=1
(solid) and k& = 2 (liquid). Then, the mixture equations
are obtained by summing the individual continuum
equations over both phases within a control volume,
including solid and liquid phases, and rewriting the
variables in terms of mixture variables. A mixture
quantity is defined as the mass fraction-weighted sum of
individual phase components. For example,

V:ﬁvl+ﬁvs7 (1)

k= fiki + fiks (2)

refer to the mixture velocity and thermal conductivity,
respectively. If a conserved quantity is written without a
subscript involving phase, then it refers to a mixture
quantity.

After performing the summation of conservation
equations over both phases, the mixture equations for
mass and momentum, respectively, can be expressed in
the following manner:

Op
2 TV ) =0, 3)

o(pv)
ot

LV (pW) = —Vp+ V- <%,LLIVV) +Fy +F,,

)

where Fy, and F, refer to body forces and phase inter-
action forces, respectively. In the present analysis, the
body forces, Fy, are given by

Fyo = pgfr(T — To) + pgfc(C — Co), (5)

where g, i and f represent the gravity vector and
thermal and solutal expansion coefficients, respectively.
The phase interaction forces, F,, will be determined from
appropriate supplementary relations (described in sub-
sequent section).

The remaining conservation equations for species
and energy, respectively, are given by

A - (€)= V- (ADIC 4 fD.C)
£V (pC — pC)v, (6)
a%h)+ V- (pvh) =V - (kVT) + V- (ph = phi)v,  (7)

where /i refers to enthalpy. In phase k, this enthalpy is
written as

h(C,T) :/T e () AL+ bk (C, T). (8)

In Eq. (8), ¢;4x(T) refers to the reference specific heat of
phase k. The final terms in Egs. (6) and (7) are included
in that fashion to indicate their evaluation as source
terms, S, and S, respectively, in a conventional numer-
ical formulation. The above governing equations will be
solved in conjunction with the phase equilibrium dia-
gram (see Fig. 1).

In addition, the following assumptions will be
adopted for closure of the overall model:

e a continuous liquid-solid mixture exists without in-
ternal gas voids;

e two-dimensional, incompressible, laminar, New-
tonian flow;

e stationary solid phase during phase transition;
binary constituent phase transition above the eutectic
temperature (see Fig. 1);

e variations of thermophysical properties, such as ther-
mal conductivity, in terms of concentration or tem-
perature will be neglected;
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Fig. 1. Binary alloy phase diagram.

o diffusion-based relationship relating liquid fraction,
temperature and solute concentration in the two-
phase zone [4].

In addition to the conservation equations, interfacial
constraints will be required for balances of conserved
quantities and entropy across the moving phase inter-
face.

2.2. Interfacial constraints

Interface tracking typically requires iterative solu-
tions because the interface position is often unknown
and its motion exhibits a strongly non-linear character.
The interfacial constraints will be utilized in conjunction
with entropy as a basis for effective interface tracking.
The binary phase diagram will be used to determine the
equilibrium temperature and concentration at the solid—
liquid interface. In Fig. 2, a typical schematic of the
solid-liquid interface is illustrated (note: n, ¥;, d4 and
df;dV refer to normal direction, interface velocity, area
and solid fraction increment multiplied by change in
volume).

N

\ .
_I entropy production due to

liquid

Fig. 2. Schematic of phase interface.

2.2.1. Energy

The heat transfer from the liquid phase into the phase
interface, HT), consists of conduction (Fourier’s law)
and advection components,

dar

HT, = —
! kldAdnl

dr + p Hie d4dr. 9)

A similar heat transfer expression can be written in
the solid phase. Also, considering a control volume at
the phase interface with a thickness dn, then the change
of energy that accompanies the advance of the interface
arises from the energy difference of an entirely liquid
volume, d4dn, and a final solid volume, i.e.

dE = HT, — HT; = p;e;d4ddn — p,e;d4 dn. (10)

Based on these results in Egs. (9) and (10), it can be
shown that the interfacial energy constraint is obtained
as

dr

|

dr

Wl = —VipAer + pAec Vi, (11)

S

where Ae; = e¢; — e, is the latent heat of fusion and V;
refers to the interface velocity. The lower case symbol
for internal energy, e, refers to intensive (specific) vari-
able, whereas the upper case notation denotes extensive
variables. In the present studies, the solid phase will be
assumed stationary such that the first term on the right-
hand side of Eq. (11) is neglected.

2.2.2. Other conserved variables

In a similar manner as the above interfacial equation
for energy, the interfacial constraints for the other
conserved variables, such as mass, solute concentration
and momentum, can be obtained by appropriate bal-
ances across the phase interface. For example, in a
similar way as the energy equation, the interfacial re-
lation for the concentration of component ¢ in a multi-
component mixture, C,, is obtained as follows:

dc. dc.

— oD,
P Vdn dn

= _Vspscc,ls + pscc‘ls Vj, (12)

+ pDs
1

s

where the difference between phase concentrations,
Ceis = Cep — Ces, 18 obtained from the binary phase
equilibrium diagram (see Fig. 1).

The previous interfacial results were obtained for
conserved quantities, such as energy. However, entropy
is not a conserved quantity since it can be produced (but
never destroyed in an isolated system). The following
development of the entropy interfacial constraint will
account for entropy production during irreversible
processes with solid-liquid phase change.

2.2.3. Entropy
In the case of entropy transport, we have the fol-
lowing transport equation in phase k:
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D(fkﬂ Sk) _ fkkaT al fkcc,kl'c,k ;
oV (T) v (ZT> B
(13)

where P,; refers to the entropy production rate and
{.x = 0e;/0C, is the chemical potential of constituent ¢
in phase k. It can be interpreted as an additional increase
of work potential in the fluid if dC,; of constituent c is
added to the mixture. On the right-hand side of Eq. (13),
the terms represent the entropy flow with heat flux and
species (mass) flux, j.,, and the entropy production rate,
respectively.

Since entropy is not measured directly, we need an
additional relationship involving entropy and the con-
served quantities, such as energy (or temperature), solute
concentration, etc. In particular, we have the following
Gibbs equation for a multicomponent mixture in terms
of phase k:

7dek PdUW éc,kdcc‘k
ds ==+ ; s (14)

c=1

where v represents specific volume. A latent heat term
is not included in Eq. (14) because the equation is
written within the single phase k.

Assuming an incompressible substance in each phase,
rewriting Eq. (14) in terms of a substantial derivative
and rearranging terms,

D(fipisi) _ DUfiprer) <
Dt Dt _Zg” Dt

(15)
c=1

Substituting appropriate terms from Eqs. (6) and (7)

into the above equation, we have

D(fipiSk) _

1 .
Dt ? {kkva +71- VV,( + Pc.k}

_;icak{_v'jc‘k +Pc.k}‘ (16)

Expanding the divergence terms in this equation
using the product rule and comparing the resulting
equation to Eq. (13), we obtain the following result for
the entropy production in phase k:
fik(VT)? uqb Pek = .

N
Z ijCA Z Cc‘k;)c?k ) (17)

c=1 c=1

Psk_

The production terms on the right-hand side of Eq. (17)
vanish after summation over the phases because pro-
duction/destruction of energy or species in one phase is
accompanied by destruction/production in the other
phase. However, the same explanation does not apply to
entropy because processes such as heat transfer, viscous

dissipation and fluid mixing are irreversible and thus
produce entropy within an individual phase.

The entropy interfacial constraint can also be written
in terms of the local entropy production rate at the
phase interface. The entropy transfer from the liquid
phase into the interface, ET|, may be written as
ET]——]q%d—le-F[)IVISldAdI, (18)

T dn

which consists of entropy flow arising from heat
conduction as well as advection, since liquid flow
carries entropy into the interface. A similar expression,
ET;, can be obtained for the solid phase. Also, in an
analogous manner as the energy analysis, the entropy
difference between a liquid volume, dAdn, at the in-
terface, and a subsequent solidified volume, can be
written as

dS = p;sidAdn — pssd4dn
= ET, - ET, + p,R,;d4dn, (19)

where the interfacial entropy production, P;;, accounts
for the entropy produced per unit mass due to heat
transfer and shear action along the dendrite arms as the
dendrite moves a distance dn during the time interval dz.

Combining the above equations and rearranging
terms,

dn ks AT

(plsl psss) dr _Fl E

ks AT

"
1+Tsdn S+p1 151

dn
— Ps Vsss + p]Ps,i .

o (20)

Combining this equation with continuity, we obtain the
following result for the entropy production at the phase
interface (i.e. interfacial entropy constraint),

Ps‘i:&(ASf*%>+ h_dT (l*%) (21)
1 s

T o Vi dn

where As; = sy — s, refers to the entropy of fusion. Ex-
periments have shown that the entropy of fusion is ap-
proximately constant for most metals and alloys, As¢ ~
8.4 J/mol K. The lower case symbol for entropy, s, refers
to intensive (specific) variable, whereas the upper case
notation will refer to the extensive variable. Richard’s
Rule states that the entropy of fusion is also approxi-
mately equal to the heat of fusion divided by the phase
change temperature.

In addition, entropy as a function of the conserved
variables, &, is bounded from above. Entropy is pro-
duced during irreversible processes, and the entropy
function, S(¢), reaches a maximum value at an equilib-
rium state. As a result, S(¢) is a downward concave
function, i.e.

§"(¢) <0, (22)
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where the prime notation refers to differentiation. In
other words, S”(&) must be a negative definite matrix
because irreversible processes produce entropy.

2.3. Numerical procedure

Analysis of the entropy equations, heat-entropy
analogies (following sections) and the Second Law of
Thermodynamics will be performed in the present paper.
In the numerical formulation, the problem domain is
subdivided into finite elements and control volumes. A
control volume is defined by all sub-elements (or sub-
control volumes, SCVs) surrounding a particular node
and an integration point (ip) is located at the midpoint
of each sub-surface (SS). Local coordinates (s, 7) are
defined within each element. Isoparametric, linear shape
functions are used within each element to represent the
variation of the dependent scalar variables in terms of
nodal variables.

Then, a control volume-based finite element method
(CVFEM), based on the PHASES algorithm [4,5], is
adopted for the solution of the phase change conserva-
tion equations and extended here to the present entropy
formulation. For details about the CVFEM and
PHASES, as well as computational accuracy tests, see
[4,5].

3. The Second Law and heat—entropy analogies

At this stage, the use of entropy as a ‘“‘variable”,
“parameter” and/or “property” should be elucidated.
From a physical perspective, entropy is a thermody-
namic property that describes the degree of random-
ization in a gas, liquid or solid at the microscopic scale.
In this definition, entropy can be produced, but never
destroyed in an isolated system. Unlike physical pro-
cesses, computational procedures may artificially pro-
duce or destroy entropy due to discretization errors or
other factors. In the latter case, the meaning of entropy
as a property is questioned since violations of the Sec-
ond Law are not observed. Despite these violations,
previous research has shown that the computational
entropy can still provide a useful parameter in achieving
numerical stability and improved computational accu-
racy. We will refer to the entropy ‘“variable” as a
combined physical “property” and computational “pa-
rameter”.

It is anticipated that the main contribution of the
present work is to establish an entropy-based framework
(so-called ‘“‘heat-entropy analogies’), involving both
computational and physical aspects of transport pro-
cesses during phase change. In a similar way to benefits
realized by previous analogies, such as the Reynolds
analogy between heat and momentum, the present re-
search explores the opportunities of introducing entropy

in phase change problems. The theory involves the
governing equations, i.e. Egs. (3), (4), (6), (7), and (13),
subject to suitable boundary conditions. These bound-
ary conditions are identified through specific cases in
application problems.

In this section, entropy will be considered as an im-
portant variable in the following parts of the phase
change analysis:

1. numerical discretization;

2. supplementary relations;

3. local reheating;

4. numerical iterations;

5. non-linear stability.

It is anticipated that entropy can serve as an effective
variable in providing further insight into difficulties often
encountered with the analysis of phase change problems.

3.1. Numerical discretization

Entropy and entropy production will be obtained
from the following formulation of the Second Law
of Thermodynamics. In phase k, the Second Law may be
written as
P = % + VG, =0, (23)
where S(&,) and G(&;) represent the entropy and en-
tropy flux in phase k, respectively. In Eq. (23), the ex-
tensive variable, S;, may be replaced by density
multiplied by specific entropy, ps; (i.e. introduces in-
tensive variable). The intensive variable, s;, also appears
in the entropy flux; for example, p,vs; gives the advective
component of the entropy flux in Eq. (23).

After the solution of the conservation equations is
obtained, an additional step is required to estimate the
entire spatial distribution of the conserved variables,
&(x, 1), based on nodal and integration point values, so
that S(&;) and G(&;) can be properly evaluated in Eq.
(23). Since the choice of a uniform entropy suggests a
type of quasi-equilibrium condition, then we will assume
that & = &; within a finite volume, where the subscript i
refers to node i, in order to ensure the Second Law is not
violated during the reconstruction step. In addition to
assuming that ¢ is piecewise constant within a control
volume, it is assumed as piecewise constant, at its
integration point value, along each control surface.
These conserved variables can then be used in the eval-
uation of entropy.

In the finite element-volume framework, the discret-
ized form of the Second Law in Eq. (23) is obtained by a
backward difference in time for the transient derivative
and integration point approximations for the surface
flux terms [19]. The computation of the transient term
requires an entropy equation of state. An integrated and
discretized form of the Gibbs equation is used to obtain
a piecewise logarithmic equation of state. In this model,



G.F. Naterer | International Journal of Heat and Mass Transfer 44 (2001) 2903-2916

entropy varies with temperature and concentration and
an entropy of fusion is released or absorbed during
phase change. This procedure completes the closure of
the equation of state. In addition, supplementary rela-
tions, including two-phase momentum interactions, Fp,
in Eq. (4), are required for closure of the overall for-
mulation.

3.2. Supplementary relations

In the modelling of the two-phase momentum equa-
tions, a supplementary relation for the momentum phase
interactions, Fp, is required for closure of the governing
equations. For fluid flow through a porous medium,
Darcy’s law [20], F,K = vfi(v; — v;), may be employed
for the phase interaction force dependence on porous
medium permeability, K, and liquid fraction, fj. In the
application of Darcy’s law, a fixed dendritic section
(porous medium) is required, i.e. not freely moving or
settling crystals. The assumption of stationary solid
material (i.e. vy = 0) in the governing equations remains
consistent with Darcy’s law.

Previous models of solid-liquid phase change have
often used the Blake—Kozeny equation [20] for the solid
permeability [3],

3
R (24)
(I=h)

where Kj is an empirical coefficient. This model was de-

veloped through a physical analogy between interden-
dritic flow and Hagen—Poiseuille viscous flow [20]

K:Ko

2909

through a non-circular tube with an equivalent hydraulic
radius based on the local liquid fraction (see Fig. 3(a)).
However, at high values of f; (i.e. fj > 0.5[3]), a cross-
flow perpendicular to dendrite arms may produce a
higher pressure difference than the Blake—Kozeny pre-
diction because of wake interactions and interdendritic
viscous effects. As a result, an alternative model was
developed to account for these cross-flow effects [4], i.e.

K:m(ﬁﬁj). (25)

It can be readily shown that both Egs. (24) and (25), as
well as the resulting Eq. (4), approach the proper limits
as fi — 0 (solid) and f; — 1 (liquid).

In previous studies [4], a flow alignment factor, ¥, was
adopted to represent a weighting factor between the
axial relation, Eq. (24), and the cross-flow relation, Eq.
(25), i.e.

f13
(1-£)

where the first and second terms represent axial and
cross-flow permeabilities, respectively. For example,
% = 0 corresponds to a cross-flow and y = 1 represents
an axial flow with the appropriate permeability factors
employed in each limiting case.

In the previous studies, y was computed in terms of
the local temperature gradient. However, it is antici-
pated that an alternative entropy-based formulation
provides important opportunities for applying previous

K = Koy f } (26)

LEGEND
..Bloke-Kozeny .
rossflow
Q
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Fig. 3. (a) Permeability analogy for interdendritic axial conditions and (b) comparison between axial and cross-flow cases.
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entropy advances (i.e. [14]) to the current interface
tracking problem. The context of these advances in-
volves applications to interfacial computations (i.e.
momentum phase interaction terms). In particular, some
possible opportunities include improved numerical
stability, computational performance and other oppor-
tunities [19]. Since the direction of dendritic growth is
related to the local thermal irreversibility, it is antici-
pated that entropy can be used to interpret axial and
cross-flow contributions in the interdendritic per-
meability. As a result, we will consider a weighting be-
tween v relative to the dendritic growth direction based
on thermal irreversibility and entropy.

In dendritic solidification, the primary dendrite arms
grow in the direction of the local temperature gradient
[21]. The gradient vector field gives the direction of
steepest ascent (or descent for negative gradient vector).
Since the primary dendrite arm growth is aligned with
the local temperature gradient, then this growth occurs
towards the steepest temperature slope. This direction
corresponds to the maximum thermal irreversibility.
This thermal irreversibility, PSJ, can be subdivided into
x- and y-direction components, P, and Ps_‘y, re-
spectively, in the following manner:

. k /dT\*> k [OT\*> . .

Although entropy production is a scalar, and not a
vector field, we may define an equivalent entropy vector,
13511, consisting of the above components of entropy
production in the x- and y-directions, given by P, i and
P&tyi (note: unit vectors i, i), respectively. For example, a
large component Ps,tr (in comparison to PW) suggests
that entropy production arises mainly from heat flow in
the x-direction. Based on this concept, a flow alignment
weighting factor is defined as follows:

vy/ Py,
1= 7A§ \/ Ps.t = Pstxi + Ps,tyja (28)
IVl / Py

where y can be interpreted in terms of thermal irre-
versibility (or temperature gradient) relative to the di-
rection of local interdendritic flow. The square root in
Eq. (28) is adopted to maintain a more direct analogy
between entropy production in Eq. (27) and temperature
gradient (or heat flow).

In Fig. 3(b), a comparison involving the permeability
variations for the axial (Blake-Kozeny) and cross-flow
models with Ky = 1 (sample reference case) is illustrated.
At values of liquid fraction above approximately 0.5, it
can be observed that the axial permeability exceeds the
cross-flow value. In this case, the effective (overall)
permeability in Eq. (26) is reduced by the weighting of
the cross-flow component. As a result, a larger pressure

difference associated with interdendritic flow may be
realized in the current permeability model (in compari-
son to Blake-Kozeny model). It is anticipated that this
additional cross-flow weighting can provide an im-
portant corrective mechanism in the computations.

The equivalent vector P, is similar to the heat flux
vector, with two notable exceptions: (i) minus sign for
Fourier heat flux; (ii) magnitude of k|VT?|/T?, rather
than k|VT|. Otherwise, the physical interpretation of the
permeability model remains that a higher cross-flow
weighting is given when the interdendritic flow is normal
to the direction of maximum thermal irreversibility (di-
rection of dendritic growth). Conversely, the axial per-
meability is adopted when the velocity is aligned with
the direction of the maximum thermal irreversibility.
The anticipated benefit is that this entropy-based ap-
proach can provide improved accuracy for interface
tracking during phase change processes.

3.3. Local reheating, recalescence and coarsening

During dendritic solidification, the released latent
heat is transferred to the surrounding liquid-solid mix-
ture, and if it exceeds the rate of external cooling, then a
local temperature rise, or recalescence, may be observed.
In addition with solute diffusion, this reheating may
initiate melting of smaller dendrite arms at the expense
of growing primary arms (i.e. dendritic coarsening).
Coarsening during crystal formation and sedimentation
in solidification processes may contribute to recalescence
and latent heat release. In both cases, thermodynamic
irreversibilities with entropy production arise during the
heat transfer processes. Since reheating and coarsening
may affect the final material properties, such as material
strength, these processes are important concerns during
solidification processing of many materials. It will be
shown that entropy can serve as an effective variable in
understanding these processes.

Consider a simplified heat balance for a crystal (or
dendrite) during solidification. The transient tempera-
ture change arises from the net heat exchange with the
surrounding solid-liquid mixture (described by overall
heat transfer coefficient, /) and release of latent heat
from the freezing crystal, i.e.

or

d
p”V'cpa =hA(T — T;) — p? Aer /i

B (29)
where 77, A and T; refer to a characteristic crystal (or
dendrite) volume, corresponding surface area, and sur-
rounding mixture temperature, respectively. Expanding
the last derivative in Eq. (29) through the chain rule, we
obtain

T 4 T—T
o p?ecy |1+ (0fi/0T)Aer/c, |

(30)
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A characteristic length scale, L., may be represented by
the ratio #”/A (reciprocal appears in above equation).

We can write Eq. (30) in a dimensionless form by
selecting appropriate reference scales for temperature
and time (i.e. ter :Lg/a). The dimensionless entropy,
temperature and time, and Stefan number (c,AT/Aey)
will be denoted by s*, 0, t* and Ste, respectively. Writing
Eq. (30) in dimensionless form, we then obtain

0 WL (k\ _ . (hk

where

, 1
h *h{l 1 +Ste/(af1/60)] (32)
refers to a modified heat transfer coefficient accounting
for simultaneous external cooling and release of latent
heat from the solidified crystal to the interdendritic fluid.
Also, the dot notation in Eq. (31) represents differenti-
ation with respect to time.

Upon comparing Eq. (31) with the rate of entropy
change arising from the sensible heat portion of the
Gibbs equation (i.e. Maxwell type relation where
cdT = T'ds), we have

os* 0 ki
@t*_H_NM(kS)' (33)

The change of liquid fraction with temperature is
calculated based on a suitable supplementary relation,
such as an approximated linear variation of f; with 0
through the two-phase region. In a similar way as
analogies between heat and momentum transport (i.e.
Reynolds analogy), the above result indicates an
analogy between heat and entropy. We will use this
heat-entropy analogy for describing recalescence pro-
cesses.

Also, the process of coarsening is closely related to
recalescence during solid-liquid phase change. During
coarsening, small or secondary dendrite arms (or crys-
tals) shrink or melt at the expense of heat transferred
from the large and growing main dendrites. The speed
and mechanisms of coarsening are not well understood;
the previous results suggest that entropy may serve as an
effective variable in characterizing coarsening and re-
calescence. In the experimental studies, entropy is not
measured directly, but rather indirectly through tem-
perature measurements. Thus, the magnitude of rec-
alescence will be observed by a measured temperature
rise, and the corresponding dimensionless temperature
gradient at the dendrite arm (characterized by Nusselt
number) can be interpreted in terms of the local rate of
entropy change. This entropy change (measured in-
directly) incorporates heat flow from the interdendritic
fluid, as well as latent heat released from the crystal or
dendrite. Both mechanisms are important parts of un-

derstanding recalescence and coarsening during remelt-
ing of small, secondary dendrite arms.

We can obtain further information regarding effective
heat transfer coefficient, #' (and Nu), by performing
many phase change experiments involving different ini-
tial temperatures (leading to different Grashof numbers)
and then seeking a suitable dimensionless correlation for
Nusselt number, Nu, in terms of Grashof number, Gr,
and other parameters. This is similar to the approach
whereby single phase convection correlations are con-
structed for external or internal flows. For example, we
can measure the initial and wall temperatures (with re-
sulting Grashof number), and then find the entropy
changes and other parameters during a specific phase
change experiment. Then, the effective heat transfer co-
efficient can be estimated from Eq. (33). These experi-
ments can then be repeated for other fluids/conditions
and presented in a final correlated form.

In addition to the above heating modes during rec-
alescence, the duration of recalescence may be estimated
from a simplified one-dimensional heat and solute con-
centration analysis (see Appendix A). In particular, it
may be shown that the recalescence duration, Az, may be
approximated in terms of interface position, R(¢), and
partition ratio, k, (i.e. C;/C; at interface), in the fol-

lowing manner:
Ae V(LY
OcyR I
32Dna? B
| [AT? =4 - 34
{6(1 — kp)kpAS2TV? ]/ AT?’ (34)

where 4 and B are the “constants” indicated by the first
and second set of square brackets, respectively. Also, kg,
As;, o and AT refer to Boltzmann’s constant
(1.38 x 1072 J/K), entropy of fusion per unit volume,
interface energy (J/m?) and undercooling level (i.e. dif-
ference between chilled wall temperature and freezing
temperature of liquid) prior to solidification.

The parameters Q and ¥, in Eq. (34) refer to ap-
proximate (uniform) cooling/heating rate and initial
growth rate of crystal (or velocity corresponding to
nucleation rate for crystal approximated as spherical
particle), respectively. Although Q and 7V, vary
throughout the mixture, the purpose of this analysis is
merely an observation of general trends in At with re-
spect to AT. In a similar way as empirical coefficients in
other phase change correlations, such as empirical co-
efficients in the Rohsenow nucleate boiling correlation
[22], the values ¥, and R (characteristic crystal size or
dendrite dimension) can be correlated with various
problem conditions.

In general, the result in Eq. (34) intersects the AT axis
at ATy = \/B/A4 and recalescence is not observed for
AT < ATy. Also, Eq. (34) indicates that the recalescence
period increases with undercooling level, AT. It appears

D
T 21— k)

2

At
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that as AT increases, latent heat is released from the
solidified material such that the duration of recalescence
is extended. It is intended here that these types of trends,
rather than detailed quantitative predictions, can be
gained from the current recalescence analysis.

In this analysis, a uniform heating/cooling rate was
assumed. Entropy can serve as an effective variable in
the above formulation since this local heating/cooling
rate can be related to the correlation involving heat
transfer coefficient and entropy in Eq. (33). Thus, a
heat-entropy analogy can provide an improved estimate
of the relevant heating/cooling rate, based on the earlier
result that the local Nusselt number is correlated with
respect to the local rate of entropy change. In particular,
the average heat transfer coefficient during this period
can be estimated by integration over the range where a
positive entropy derivative is observed in the data
(i.e. conditions corresponding to recalescence and/or
coarsening). In this way, the time period of recalescence
can be expressed in terms of a heat-entropy analogy.

3.4. Numerical iterations

Although we have outlined the relevant entropy
equations, the entropy values in a numerical formulation
cannot be calculated until the phase distribution is
known. Finding the phase in a finite control volume re-
quires a solution of the energy equation, but this solution
requires knowledge of the proper phase distribution. As
a result, an iterative approach is required to find the
proper phase distribution. An iterative procedure will
now be described in conjunction with the Second Law.
Unlike conventional procedures, such as Picard itera-
tion, which may violate the Second Law by producing
non-physical phase distributions (i.e. a solid region
completely enclosed by liquid even though zero sources
and sinks exist there in the pure material), the current
procedure will be closely linked with the Second Law.

A primary difficulty with accurate predictions of
solid-liquid phase change is interface tracking (i.e. pre-
dicting the location of the phase interface). The follow-
ing rules will be used to estimate the tentative phases
such that the solution of the energy equation can be
obtained, and then repetitive iterations of these rules are
performed until no further changes in spatial phase
distribution occur at the current time step. It will be
shown that these physically based iterations are closely
linked with the general principle of non-decreasing en-
tropy and the Second Law.

Rule 1. A control volume must pass through a melt
region during phase transition between solid and liquid
phases.

In order to prove this assertion, consider a situation
where molecules align themselves on a crystal lattice

from the liquid but no change of entropy occurs during
the process. In other words, As; = 0 in Eq. (20) because
the material passes from a liquid to solid phase without
passing through the mushy (two-phase) region. How-
ever, under these circumstances, the right-hand side of
Eq. (20) becomes negative and the Second Law is vi-
olated, thereby showing that the material must indeed
pass through a two-phase region during phase transition.
In reality, As; > 0 because we have more certainty re-
garding the whereabouts of a molecule in the solid phase
as compared to the molecule’s location in the liquid.

Rule 2. Phase transition in a control volume cannot
occur without a phase transition to the same phase in an
adjacent volume first.

In a similar manner, consider a proof by contradic-
tion and assume instead that a solid region could form in
isolation within the liquid even though no sources or
sinks of energy exist within the domain. Also, we are
considering phase transition in accordance with the
phase equilibrium diagram such that solidification (or
melting) occurs instantaneously at the equilibrium lig-
uidus (or solidus) temperature. Under these assump-
tions, a solid volume could be established in between
adjacent liquid volumes. Without considering concen-
tration effects, this suggests that the temperature in the
middle volume is lower than the surrounding liquid
temperatures. However, in the case of conduction
transport, energy flows down a temperature gradient
and therefore Fourier’s law is necessarily violated, be-
cause in this case, energy flows away from the middle
volume (i.e. solidification occurs) yet it also travels up a
temperature gradient. This situation cannot occur
without additional effects such as energy sinks that
would lead to this type of phenomenon. Alternatively,
for the case of heat transfer alone, it can be shown from
Egs. (20) and (21) that a reverse direction of heat
transfer (i.e. heat flux of AV T rather than —kVT) leads
to negative entropy production and a violation of the
Second Law. The result is that the original assumption is
invalid and a volume cannot change phase without a
phase transition in adjacent volumes first.

Although the Second Law can be expressed in a
variety of diverse qualitative ways, a quantitative measure
is also an important aspect of the Second Law. In par-
ticular, the magnitude of entropy production charac-
terizes the irreversible processes (i.e. viscous mixing, heat
transfer) and diffusive (entropy-producing) or non-
physical (entropy-destroying) parts of a numerical for-
mulation. Thus, the following objective/rule is proposed
in addition to the previous two rules.

Rule 3. (Objective) The tentative phase within a control
volume must give a positive entropy production rate for
the discrete time step.
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This objective/rule provides a quantitative descrip-
tion of the Second Law whereas the previous two rules
were viewed from a procedural perspective of the Second
Law for phase change problems. Although the previous
two rules alone do not ensure positive entropy produc-
tion in the computations, it is anticipated that these rules
provide effective guidelines for compliance with objec-
tive/rule 3 because the rules have been interpreted as
discrete analogies of the Second Law.

Since the previous two rules are directly implemented
in the specification of tentative phases prior to each
computational iteration, then these Second Law anal-
ogies will not be violated. Thus, these two rules permit
efficient phase-temperature iterations during phase
change while effectively promoting compliance with the
Second Law. It is anticipated that this approach could
provide convergence acceleration as well as a unified and
physically based understanding of discrete error analy-
sis. Also, rather than ad hoc tolerances for solution
convergence, these rules provide a basis from which
rigorous analysis of non-linear stability for phase change
problems can be obtained.

3.5. Non-linear stability

Although the previous heat-entropy analogies (in-
volving momentum phase interactions, recalescence and
phase rules) provide a physically based formulation,
these analogies alone do not ensure stability of the nu-
merical computations. However, compliance with the
Second Law is closely related to non-linear stability
since diverging (or oscillating) results, as well as negative
entropy production, are non-physical processes. As a
result, it is anticipated that the emphasis on entropy in
this paper can foster developments leading to stable
computations of heat transfer and fluid flow. In the
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following example, a specific case is presented to clearly
identify a link between the Second Law and stable,
converging numerical computations involving heat
transfer.

3.5.1. Example. Liquids separated by adiabatic partition

In this example, two liquid mixtures are initially
separated by a partition at the midpoint of a cavity (see
Fig. 4(a)). The initial liquid temperature on the left-hand
side exceeds the initial temperature on the right-hand
side. Refer to Fig. 4(a) where the initial temperatures are
7Y and TY, respectively, and the subscript and super-
script refer to side and time step, respectively. Further-
more, we will assume that the mass and density of
material are equal on both sides of the cavity.

Now the partition is removed and heat is transferred
from the left to right side by conduction. The purpose of
this example is to establish a relationship between the
Second Law and computational stability by considering
bounds on the solution norm. We will establish this
objective without adopting specific numerical values in
the example, and as a result, it is anticipated that the
result can be generalized and extended to other prob-
lems, including problems with phase change.

Under these conditions, the final equilibrium tem-
perature (after complete diffusion) is the arithmetic av-
erage of the two initial temperatures. As a result, we can
calculate the entropy at the equilibrium state using the
entropy equation of state. Recall that entropy, S(&), can
be written in terms of the vector of conserved variables,
¢ (i.e. energy, or temperature, in this example), through
the Gibbs equation. Also, from the downward concavity
property of the entropy function, the derivative S’'(&) is
decreasing as it approaches the equilibrium state, &.
Expressing this decrease in mathematical terms, we ob-
tain

2 | |
r — entropy-stable
179 ——F— - unstable
15 | ¥
diverging results -’
1.25 1 ot
E 1 v
gt
0.75 | i
i \ | s accelerated
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Fig. 4. Example (a) schematic and (b) convergence characteristics.
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S() = 8(&) =S (@OE-¢&) =0, (35)

where the equality holds at the equilibrium state, ¢ = &,
and the subscript i refers to node i in a spatial discret-
ization of the problem domain.

A measure of the thermodynamic state of the entire
system relative to the reference condition at & is obtained
by averaging Eq. (35) over the spatial domain. At time
step n, we obtain

(AS)" = (S(8) - S(&) — §'()(E~ &)

&
= S(8) — (S(&") > 0, (36)

where the averaging operator, (£), is the average value of
¢ (spatially averaged across entire domain). Also, the
latter averaged term in Eq. (35) vanished since it was
averaged to zero.

Based on the Second Law for the insulated enclosure,
we find that the total entropy increases, and as a result,
the entropy difference (relative to highest entropy at final
equilibrium state) decreases with time. For example,
after a single time step,

(AS)’ = (AS)' = 0. (37)

The above entropy differences can be computed from the
entropy equation of state. In this example, a piecewise
logarithmic equation of state based on the Gibbs equa-
tion [19] is adopted.

After substituting the specific form of the equation of
state into Eq. (37), taking exponents of all resulting
logarithmic terms, and rearranging, we obtain

T -1/ +|T - LI<[T - T+ T -1, (38)

where the absolute values can be interpreted in a geo-
metric way. The temperature differences relative to the
equilibrium temperature, T, can be interpreted as norms
or “distances” from the equilibrium state. In particular,
let us define ||n||, as the L; norm of a scalar #, such as
AT, where

Il = (}VDT—TA), (39)

and N refers to the total number of control volumes (i.e.
N = 2 may be adopted in our example for two sides of
the enclosure).

If we now extend and generalize the result in Eq. (38)
by taking 7 and 7} as the initial conditions (rather than
7Y and T7) prior to the second time step, and similarly
with the third time step, and so on, we obtain

"l < Q= < <Dl (40)

This result suggests numerical stability with reference
to the L; norm. Although this result was based on the
downward concavity property of the entropy function in
Eq. (35), it can be readily shown that the same result

would be achieved through a direct application of the
Second Law to both sides of the enclosure. As a result, it
can be observed that compliance with the Second Law
(or the equivalent principal of non-decreasing entropy in
this example) ensures that the L, norm of the scalar re-
mains bounded. In other words, an entropy-based ap-
proach has ensured numerical stability since the
temperature difference (with respect to equilibrium
temperature) is decreasing in a monotonic fashion.

The following expressions give two examples of
functions related to Eq. (40): (i) an entropy-stable
function (subscript es) satisfying the inequalities in Eq.
(40); (i) an unstable function (subscript us) exhibiting
non-bounded (oscillatory) solution norms not obeying
Eq. (40), i.e.

ne =exp (=5): (41)

Hus = €XP ( - g) |1 +0.0047* cos(nm)|. (42)

These examples are illustrated in Fig. 4(b), where the
solid and dashed lines represent the entropy-stable and
unstable results, respectively. In the entropy-stable case,
the solution norm is bounded by its initial value and it
decreases in a monotonic fashion. This trend is a desir-
able characteristic of a numerical scheme since it pro-
vides a stable convergence in the computations. On the
other hand, the unstable (oscillatory) result, #,, illus-
trated by the dashed line in Fig. 4(b), does not obey the
bounded condition in Eq. (40). As a result, the solution
norm initially decreases but oscillations appear shortly
thereafter and unstable computations appear in the re-
sults. Thus, a scheme which satisfies the inequality in the
Second Law is more desirable since it provides stable
computations.

Similar results involving gas dynamics have been re-
ported by Camberos [23]. The main goal of this example
is that we have established a relationship between the
Second Law and solution stability. Although this ex-
ample has not implemented phase change, it is given
here to demonstrate some connections between entropy
and stable temperature computations. Also, heat—en-
tropy analogies have been adopted in the phase change
models, but the overall formulation has not ensured
compliance with the Second Law since negative entropy
production may arise from discretization errors, etc. in
the computations. However, it is anticipated that the
entropy-based focus in various components of the model
provide a solid basis from which this objective (com-
pliance with Second Law) can be achieved.

4. Conclusions

Analogies between heat and entropy transport have
been presented for problems involving solid-liquid
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phase change. The interfacial entropy constraint gives
the rate of entropy production at the moving interface
due to viscous dissipation and heat and mass transfer.
It is shown that the thermal irreversibility can be used
in a permeability weighting factor in the two-phase
zone for evaluation of phase interactions in the mo-
mentum equations. Also, recalescence and coarsening
processes were examined in view of a heat-entropy
analogy involving the rate of entropy change and local
reheating due to the release of latent heat from a so-
lidified crystal (or dendrite arm). Heat-entropy analo-
gies were also presented for effective numerical
computations of phase change heat transfer. In sum-
mary, it is anticipated that entropy can serve as an
effective variable in describing and understanding var-
ious interfacial processes during solid-liquid phase
change.
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Appendix A. Duration of recalescence

For a control volume moving at a velocity V' (¢) with
the phase interface in a one-dimensional, semi-infinite
domain, we have the following approximated set of
governing equations and interfacial constraints:

oC d’C
oT T of;
pCpa_t = ka—xz - pAef6_I7 (AZ)
subject to
G0) =Gy, T(0) = Ty; (A3)
fDa—C =G -k)V, G|,=Cp; (A.4)
ox |,
or or
—ka l+ka—x S—pVAEf, T|oo_T0’ (AS)

where R(¢) is the interface position and the subscript co
refers to a location sufficiently far from the moving
phase interface where the bulk liquid concentration, Cy,
and temperature, 7y, are observed.

Integrating Eq. (A.1) from x = R — oo,
0

= /ROO Gix,0)dx = G(1 = k) (2). (A.6)

An exponential concentration profile is assumed in
the liquid region ahead of the interface [24], i.e.

Clz%exp {— V(t)(x z_)R)} (A7)

Combining Egs. (A.6) and (A.7), we obtain the fol-
lowing first-order differential equation for V():

v (1—k
EJF( 5 p)rﬂ:o. (A.8)

Solving Eq. (A.8) subject to ¥(0) = ¥;, we obtain

L 20—k
VO = k=T (A.9)

As the solution approaches a steady state (z — o0),
conduction into the interface balances the latent heat
release from the interface and the interface becomes
stationary, i.e. V() — 0 in Eq. (A.9).

The rate of temperature change with time is negative
during cooling, but it may become zero and positive
during recalescence if the rate of release of latent heat
exceeds the rate of cooling. In the case of a uniform
heating/cooling rate, Q, the onset and completion of
recalescence can be estimated from Egs. (A.2) and (A.9)
at a zero rate of temperature change, i.e.

or Aef Vl 1
o _piBealh - 0. Al
ot o+ cp [R I+ xt 0 (A.10)
As a result, the following duration of recalescence is
obtained,
2 2

A= D (A ) (LY (A.11)

2(1—ky) |\ OcpR Vi

Under the assumption that the initial crystal growth
rate, ¥;, varies in an exponential manner [25] as a
function of the interface Gibbs energy, AG, we have

A
VizVoeXp(fk—CT;),
B

where kg = 1.38 x 1072 J/K is the Boltzmann constant
and AG represents the energy required to maintain
crystal bonds in the lattice structure from melting back
to the liquid. The Gibbs energy may be written in terms
of the interface energy, ¢ (J/m?), and the entropy of
fusion per unit volume, As; (J/m*® K), in the following
manner:

(A.12)

16 ¢°

AGr— ———
“ 3 ASEATY’

(A.13)

where AT is the undercooling level prior to the onset of
solidification.Substituting Egs. (A.12) and (A.13) into
Eq. (A.11),
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Am D (AN (LY
2(1—ky) |\ OcpR 7
D 3210
- AT?
{2(1 —ky) 3kBAs2TV02}/
B
=4- AT (A.14)

This result is adopted as the approximate duration of
recalescence (Section 3.3).
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